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During this second semester of the research I have developed

the basic mathematical background and some of the computational

tools for exploring the physical processes of current buildup in

the layers above the photosphere. This process is the origin of
the flare energy and its physic-mathematical understanding is the

cornerstone for any attempt to quantify the coarse ideas

developed during the first semester. The result consisted in the

development of the formalism for solving the coupled gas and
current density temporal/spatial 3-dimensional evolution for

given velocities at the photospheric boundary (the J-method). The
method was tested using two basic 2-dimensionai magnetic

configurations and we were able to solve analytically the

problems posed which include regions with null field and gas

pressure effects (some of these problems were never solv,_d

before). A presentation was made at the recent American
Astronomical Meeting in Columbus, Ohio, and a first paper h_s

been submitted to Physical Review A. These papers (enclosed)

present part of the results achieved so far.
Also work has been done in characterizing the magnetic free-

energy content of a region as results from the electric currents.

This approach shows precisely which is the energy and why it

arises, as well as how can it be released. The work gives
mathematical foundation to the notions of self- and mutual-

inductance and indicates how they can be applied to the solar

atmosphere in which complex distributions of spread current
systems and current sheets are likely exist as a result of the

dynamics previously studied. Further work in applying and

presenting these results on the energy content will proceed

during the next period of performance of the Grant.
I have also studied a preliminary list of UV lines which may

be suitable for Stokes profiles study through space-based future

instrumentation. More studies will be carried out in the next

period with the aim to narrow down the list of interesting lines
and estimate the magnitude and spectra of the polarization

signals which are likely to be observed. This research would

provide the design constraints for the instrument I intend to

propose.

Juan M. Fontenla

PRINCIPAL INVESTIGATOR
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ABSTRACT

We present a method for solving plasma MHD problems arising from

the interaction of plasmas with magnetic fields in stellar

atmospheres. Our approach, in contrast to previous methods, is not

based on solving equations for the magnetic field and plasma

velocity but rather studies the evolution of the electric current

and density (and the related gas pressure). We have applied the

method to several studies involving linearized departures from

static, current-free equilibria. The applications show explicit

solutions for cases found in astrophysics and to problems

encountered with earlier studies where the gas pressure was

neglected. The method is particularly well suited for studying

situations which involve a transition between high and low plasma-

beta regions. It shows precisely how electric currents, and

magnetic free-energy, build up in the plasma as a result of the

slow stressing of a potential magnetic field configuration. The

method also demonstrates how transverse-current waves, a mix of

Alfven and magneto-acoustic modes, propagate in a low-beta plasma

for any density stratification and background field geometry.
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I. Introduction

It is customary to study the behavior of astrophysical plasmas

by deriving MHD equations for the magnetic field and the plasma

velocity from which the electric current has been eliminated EI02].

Although these equations are based on a number of simplifications [3J

they have been used until present to address a wide variety of

problems [4'5]. These methods lead to coupled partial differential

equations for the spatial and temporal evolution of the magnetic

field and the velocity, and in theory can provide precise solutions

to the dynamics. The solution of such equations requires knowledge

of boundary and initial conditions. These conditions, in practical

applications, are hard to specify and usually involve arbitrary

assumptions which make it difficult to establish the roles of the

local plasma and the external sources of the magnetic field. Other

approaches have been used for ideal plasmas which are based on

energy or magnetic flux arguments [6,L8]. These approaches, also

depend critically on the boundary and initial conditions and often

have to resort to strong simplifications.

A different approach of circuit analogy studies the sources of

the field, the electric currents, treated as circuit elements.

This approach has been successful in providing insight into the

energetics C9] . However, this approach does not give a full solution

to the plasma dynamics. The method we propose constitutes a

synthesis of the previous views in which we study in detail the



plasma dynamics together with the electric currents. This method

gives a full solution to the plasma dynamics and also gives insight

into the energetics and allows us to define, when possible, the

self- and mutual-inductance of complex current systems.

In this paper we present our approach in which we eliminate

the plasma velocity and use equations describing the evolution of

the electric current and the plasma density. The equations so

derived are very powerful for solving several types of problem

found in astrophysics. Wedescribe a few particular applications to

the linear analysis of the propagation of disturbances in otherwise

static, current-free atmospheres. The case studies we treat in

detail involve only regions of low (<<i) and intermediate (~i)

plasma-beta. For high-beta regions the plasma dynamics is described

by the hydrodynamics and the electric currents (and magnetic

fields) can be evaluated straightforwardly.

In our analysis we will show how the magnetic free-energy of

the plasma can be obtained directly from the electric currents.

This method allows us to obtain the free-energy without resorting

to differencing which nearly always leads to large errors when

applied to observations which contain significant uncertainties.

Moreover, in our formulation the volume integral need not be

evaluated over very large volumes but only over the volume in which

the relevant currents flow.

For the low beta case we consider two examples involving two-

dimensional geometry of the background field. These examples are

selected for their simplicity and because they are similar to



situations encountered in actual solar magnetic field observations

and in addition they give rise to interesting phenomena.

The first example describes the field around a null line which

results from the potential field produced by two current systems

located outside the domain of interest. Such current systems can

be, for instance, two concentric circular current loops with a

radius that is very large compared to the dimensions of the region

of interest. This null line magnetic configuration is often

associated with the production of solar flares, and has been

studied by Craig and McClymont [I°] and Hassam[11]. These authors

neglect gas pressure effects and obtain a fast reconnection regime

by matching analytical solutions for the inner resistive core with

selected solutions for the ideal, low-beta, outer envelope. Their

analysis is based on physical conditions which are quite different

to the problems we consider here. In particular we are concerned

not with the explosive solar flare phenomena, but rather with the

gradual stressing of the magnetic field which can convert the

convective energy, which drives the high-beta layers, into magnetic

free-energy of the low-beta regions. This energy will then be

available for fuelling a wide range of solar and stellar phenomena

including flares. We show that while the solutions obtained by

these authors are mathematically correct, they represent only a

subset of the possible solutions. This is a result of their neglect

of the gas pressure which has important consequences to the overall

behavior. In our analysis of this case we divide the space

surrounding the resistive core into high-beta (>>I) and low-beta
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(<<I) regions. We derive the more general eigenfunctions for the

outer low-beta region which we match to a solution for the high-

beta region through a region of intermediate plasma-beta. We show

that the high-beta region is much larger than the resistive core

and has very important effects on the plasma behavior, in

particular allowing for substantial localized energy storage.

We also present a detailed study of the simple arcade magnetic

field configuration, which would result from a single current loop.

We determine the eigenfunctions for this configuration, and show

how to compute the full solution from specified motions of the

footpoints. Our setup is somewhat similar to that of Murata [5],

however we study other modes not previously solved in detail. We

are able to show the character of the standing oscillations which

could be driven by periodic motions of the footpoints, and also how

the deformations of the magnetic field

electric currents can be produced by

motions.

and the corresponding

non-periodic footpoint

We formally solve the case of a region of intermediate beta

(of order of magnitude unity) in which the pressure effects and the

Lorentz forces are both significant. Our formal solution applies

for quasi-stationary cases in which the terms containing the

partial derivatives of the electric current and the gas density

with respect to time are negligible. We show how these regime can

be matched to the previous solutions for the null line case.

The examples we have chosen show how our method allows us to

derive the behavior of the major plasma parameters in relatively



complex vector field configurations, through the solutions to a

pair of coupled second order differential equations. These

equations which describe the electric current (a vector quantity)

and the gas density (a scalar quantity) dynamics, do in principle

contain non-linear terms. However, the equations in our formulation

are easy to linearize in most cases because the scaling of the

terms can be easily estimated a priori, and verified a posteriori.

Although the explicit solutions we derive correspond only to

small departures from potential cases, that is to small current

buildup, they do display the beginning of the development of

stresses in the field and of the storage of magnetic free-energy in

the plasma. Our examples correspond to the very beginning of a

magnetic evolution when motions within the high-beta plasma, start

the flow of electric currents through previously current-free

regions. In this stage, there are no fast instabilities and the

classical Joule dissipation of the electric currents would be small

for conductivities and velocities typical of the solar atmosphere.

Therefore, the field stresses and electric currents will grow into

a more complicated non-linear regime in which fast instabilities

become possible.
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II.Plasma electromagnetic.

In the electromagnetic equations we shall, as is usual,

neglect displacement-current, magnetization, polarization and many

high-frequency plasma phenomena. We further assume a pure non-ideal

MHD in which the plasma is quasi-neutral and the electromagnetic

equations take the form

V.B=0

VxB= 4_ j
c

VxE=--I @B
c %t

(1)

where the equation for the divergence of the electric field is

omitted and the displacement current is neglected. The space-charge

is not specified but derives from the condition of zero divergence

of the electric current (see Braginski[12]),

V.J=0 (2)

We invoke the linearity of the electromagnetic equations (1-2)

and use the Coulomb gauge to decompose the vector fields into

rotational and irrotational (or potential) parts, giving

Ep=V .

Er=VxA.

V.A.=0

(3)
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For simplicity we consider scalar electric conductivity, after

transformation to the fluid frame, and we neglect transport

phenomena that may lead to charge separation (e.g. Hall effect).

However, the analysis may easily be extended by including a tensor

conductivity, or better yet a tensor resistivity, and the Hall

electric field. For the Ohm's law we use

C j=cE+ vxB (4)
a

This is the first non-linear equation we introduce, and it involves

properties of the local plasma.

From the second of equations (i) the potential part of the

electric current is

Jp=o (5)

and only the rotational part of the current remains, in the present

approximation.

The third of equations (i) give the rotational part of the

electric field. The potential part of the electric field can be

found from equations (2) and (4). We find that the potential part

of the electric field, Ep, satisfies the equation

V. (cEp+ vxS) -Jr" V(_) =0 (6)
o

This expression shows that the electric currents needs to be
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included in determining the electric field (the potential part)

only when: conductivity is not too large and varies substantially

in the direction along the current. Otherwise, we obtain Ep from

the plasma velocity, magnetic field, and the gradient of a

potential with zero Laplacian. This electrostatic potential

constitutes a boundary condition and depends on the space-charge

outside our domain. The external charge is part of the global

problem, and is considered as given for our study. The space-charge

within our domain can be found from the equation:

4_cp,=cV. Ep=-V. (v_B) p+Jr. V(_) (v)

At this point the usual approach is to derive an equation for

the magnetic field by taking the curl of the second of equations

(i) and replacing equation (3), resulting in

@B+Vx[Dm(V×B)]=Vx(vxB) (8)
at

where D m is the magnetic diffusion coefficient. For homogeneous and

isotropic resistivity this equation gives the more usual expression

containing the Laplacian of B. The right hand side (RHS) of

equation (8) depends on the velocity and may be strongly non-

linear. This equation generally has very complicated vector

properties which often make it difficult to find the solutions of

the equations, and the magnetic field it describes contains the
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result of all sources of the field including the local and remote

sources.

We take a different approach by combining equations (i) to

eliminate the magnetic field. The relationship between the electric

current and field follows, thus

aJ= + C2Vx (VxE=) =0 (9)
at 4_

Then using the Ohm's law (equation [4]) to eliminate the electric

field we derive a modified diffusion equation for the electric

current J

aJ= +Vx [Vx (D, nJ r) ] =--CVx [Vx (VXB) ]
at 4=

(io)

The equation for the electric current (I0) resembles the

equation for the magnetic field (8) but has much simpler vector

properties because the diffusion coefficient appears directly as a

coefficient of the current. Again the double vector product can be

replaced by a Laplacian to obtain a classical diffusion equation.

However this transformation no longer requires the diffusion

coefficient to be homogeneous and isotropic, but also results when

the divergence of the term (D m J) is zero; which is satisfied not

only by homogeneous resistivity, but also by constant resistivity

along the current lines. The equation for the electric current (i0)

could also be obtained by taking curl of the equation for the field
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(8), and it may be considered as of higher order in the spatial

derivatives. However, this is not a disadvantage quite the contrary

because the LHS of equation (8) contains a mix of the potential and

rotational magnetic fields, and the effects on the plasma dynamics

only arise by the curl of the field. While the LHS of equation (I0)

contains only the electric current which corresponds to a local

property of the plasma and not the more abstract magnetic field

which reflects contributions from the whole spatial domain.

Therefore, equation (I0) describes the temporal variation of a

quantity similar to other local properties of the plasma such as

velocity and density.

The magnetic field appears in equation (I0) only in the form

of a vector product with the velocity. This magnetic field can be

expressed in terms of the currents J and boundary conditions using

the second of equations (i). The subsequent equation can be

formally solved by transforming it into an integral form. If the

integral is performed over the whole infinite domain the potential

part of the magnetic field, Bp, must be zero and the magnetic field

is the curl of a vector potential, A_. This vector potential can,

in turn, be computed from the total electric current distribution

from

J(r/)
dr _

Ir- 'l
(Ii)

However, in astrophysical problems, there is most often only

observational data concerning the magnetic field on the boundaries
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of the finite region under study. In this case it is more

convenient to define both a scalar and vector potentials for the

magnetic field. These potentials arise from the currents both

outside and inside the domain of interest and satisfy the equations

_72Ab= -4_ j
C

(12)

The scalar potential can be found from the boundary conditions

alone, but the vector potential requires the knowledge of the

currents inside our domain. These equations can be formally

integrated using Green's functions or using image methods.

In some problems with simple geometry authors have resorted to

formulating equations for the vector potential A_ instead of

solving equation (8). This approach has some advantage for ideal

cases in which current dissipation is negligible. However, the

vector potential is still a quantity which depends on the total

current distribution, as shown by equation (ii), and is not a local

property of the plasma.

Next we will consider how to derive the velocity from a

consideration of the plasma dynamics. This plasma dynamics only

arise through the curl of the magnetic field, viz. through the

interaction of the local electric current with the remote currents.

This emphasizes the significance of our formulation of equation

(1o).
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III. The Plasma dynamics

The dynamics of the plasma is found from the equations

a-_+v. (pv)=0
at

av
p _ +p (v. V) v+Vp-_p :Fv+F 1

4 pV. v)
Fv=-Vx [p (Vxv) ] +V(_

El = 1 (JxS)
C

(13)

which contain both gravity and viscous terms.

The temporal variation of the density can be obtained by

combining the first and second of equations (13) to obtain an

explicit equation for the density which contains no first-order

velocity terms. Thus

_-_-_-V. [W. (pv) +(pv.V) v+Vp-_p-F v- (JxB) ] =0
at 2 c

(14)

An equation describing the rotational electric current can

also be obtained which contains only higher-order velocity terms.

Taking the vector product of the second of equations (13) with the

magnetic field we derive the expression for the time derivative of

the right hand side of equation (I0),

15

,i



@ (vxB) ( @B + FvxS
at - vx-iE)+Bx[(v'V)v] --+P

+ BxVp+(_xB)+ 3" [(JxB) xB]
p pc

(15)

This equation can be further expanded by combining the last of

equations (I) and equation (4) into

a/3 =Vx (vxB---cJ9 (16)
at a

Substituting we obtain the more explicit relation

a(vxB) --vx [Vx (--c09]+vx [Vx (vxB) ] +Bx [(v.V) v] +
8C a

FvxB BxVp + 1+--+ (_xB) +-- [(JxB) xB]
p p pc

(17)

which displays a number of non-linear terms whose importance can be

assessed for different problems. Inserting equation (17) into the

time derivative of equation (i0) we obtain the equation for the

electric current, in which the lowest order terms of equation (i0)

on the velocity have been eliminated,

___J+Vx(Vx{a(D= _
at 2 at

+vx[Vx(mmJg]- C_[Vx(we)]_
4_

---CBx [(v.V) v] + c(SxFv)
4_ 4xp

c(VpxS) + c(Bx_) + Bx (JxS)}}:0
4rip 4n 4_p

(18)

This equation displays only higher-order terms in the velocity

except for the third term which contains the product of the current

16



and the velocity. However, this term also contains the magnetic

diffusion as a factor and therefore is negligible in most high-

conductivity cases.
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IV. Linear departures from static equilibria

Let us now apply equations (18) and (14) to describe the

electric current and plasma dynamics in some specific situations.

Linearizing the hydrodynamic equations, and neglecting

viscosity, the equation of motion (14) for the departures from the

equilibrium values becomes

-_8p+9. VSp ÷Q_=O
Ot a

Q]=Iv. 8 (J×B)
c

(19)

Neglecting Joule dissipation the equation

electric current becomes

_J-vx{Vx [ (JxB) xB +Q_] }=0
c3t: 2 4_p o

Qp=c[ BxVSp+ ____BBSp ]
4_Po 4_p o

for the rotational

(20)

These two sets of coupled equations, together with the equation

which relates the pressure to the other variables, contain the full

solutions to the first-order problem. The plasma velocity can be

obtained from equations (13), provided that the density, electric

current, and magnetic field are known.

The equation for determining the pressure variation results

from the energy equation. This equation can be expressed, assuming

that the plasma is adiabatic and has a polytropic index gamma, as
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ont2
-V6p+g6 p +6F 1 ) =0

PO

(21)

where we have eliminated the velocity.

The system of equations is rather complicated for cases where

the density, temperature and magnetic field are all inhomogeneous.

However, equations (19) and (20) have a very simple structure and

much can be learned from them even in these complicated cases. In

the first place one can easily characterize the acoustic, magneto-

acoustic and Alfven modes regardless of geometry and inhomogeneity

of the background atmosphere. For both the acoustic and the Alfven

modes, the two equations (19) and (20) are decoupled. In the

acoustic mode only equations (19) and (21) determine the solutions

and give the density and pressure variations by setting Qj=0. In

the Alfven mode only equation (20) determines the solutions and

Qp=O. Therefore, the equations for propagation of such disturbances

become very compact. On the other hand the magneto-acoustic mode

arises by the coupling of all three equations, (19), (20) and (21),

and this is more complicated. However, in many cases found in

astrophysics simplifications can be made which allow for

simplifying the equations. For cases where the Alfven velocity is

much larger or much smaller than the sound speed either Qp or Qj

can be neglected and the solution can be found by solving the

equation for the dominant variable (J or p, respectively), viz. the

Alfven or acoustic mode equation, respectively. Then the equation

for the dominated variable (p or J, respectively) is solved by
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using the already determined force (Qj or Qp, respectively).

In the following paragraphs we will apply our scheme to solve

particular problems. In this way we will show how our method

permits for simple solution of two-dimensional cases, for given

boundary and initial conditions. This cases have not been solved in

detail for the situations discussed in this paper, but conceivably

they may also be solved by other specifically tailored methods. We

will show that our method is simple, very general, and gives

substantial insight into the role of the boundary conditions and

the magnetic free-energy buildup in the local plasma.
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A. Negligible compression cases.

A simple case is that of an inertial regime where the density

and pressure terms in equation (20) are negligible. This may

correspond to Alfven modes, or to magneto-acoustic mode motions in

a medium where the Alfven velocity is much larger than the sound

speed. In either case this requires that the background magnetic

field be substantial. In this regime equation (20), with Qp

negligible, dominates and the velocity is simply given by the force

balance between the Lorentz force (due to the electric current and

magnetic field) and the inertial force, according to

av_ _ (J×B) (22)
8_ p0c

where the density and the background

arbitrary functions of the coordinates.

Considering a purely transverse

current, equation (20) becomes

magnetic field can be

(to the magnetic field)

_J:+vx[Vx( Be2 Jr) ] =0
@t 2 4_p o

(23)

where the factor multiplying the current is the Alfven velocity V,.

The magnitude of the Alfven velocity can be variable because of

either density or background magnetic field inhomogeneities, and in

this apparently simple case the equations for the velocity or the

magnetic field may have very complicated vector properties because
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of variations in plasma density and in magnitude and orientation of

the background magnetic field. Instead, we find a far simpler

equation (23) for the rotational part of the current (the potential

part was discussed above, see equation 5).

Let us consider the cases of a magnetic arcade and of a

horizontal line of null field, both in a stratified isothermal

atmosphere. These cases can be considered as prototypes for many

cases found in solar physics and astrophysics t13]. For further

simplification we assume that the background current is zero

through the domain we solve, i.e. the background field is

potential. The two magnetic configurations are depicted in Figures

1 and 2.

The simple magnetic arcade can be constructed using the

potential field

Bo=bVarctg(_) (24)
z

The case of the null line can be constructed using

So=b?(yz) (25)

In both cases we only consider regions away from discontinuities or

zeroes of the field (which occur at y=z=0). Note that in both cases

the magnitude of the field decreases linearly or increases

inversely, respectively, with distance from the y=z=0 line.

Therefore a cylindrical coordinate system is appropriate for the

case of homogeneous background density. We find the equations
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a2..-.-J + b---L.2Vx [Vx ( ] =o
8t = 4_p o r =

(26)

for the simple arcade case, and

_-----J+b2 Vx[Vx(r2J¢)] =0
8t 2 4_p o

(27)

for the null line case. In both cases r=(yZ+zZ) I/z is the distance to

the discontinuity or null line, respectively. Considering separable

solutions, assuming that the current flows only along the x

direction, and using cylindrical coordinates in which the

longitudinal axis is oriented along x, and the angular variable is

measured from the vertical (z axis), we find solutions of the form

Jx=ae i(_t+_t,) f (r) (28)

where a is the amplitude and f(r) satisfies the equation

1 d [rd(r2=f)]+q(r)f=O
r dr dr

(29)

with

for the arcade case, and
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_=I

for the null line case. In both cases is

q(r) =_2 4_P_____O_m2r2___[_ (30)
b 2 r 2

We find the solutions for the two previous cases by performing

some transformations. Note that for purely oscillating solutions

K=_ 2 4=P----_°> 0 (31)
b 2

The general solutions for the arcade case are found in terms

of Bessel functions because equation (29) can be transformed into

a standard Bessel equation [14]

_2 d2g+___ + (_2_v2) g=0

4_ 2 a_
(32)

by defining the variables

f
g=--

r 2
(33)

and the parameter

m
v=-- (34)

2

The behavior of the solution depends on the value of m, but in
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general it oscillates above and below zero as r increases. The

solutions can be expressed as

ir 2

f (r)=r ;J.12 (T _-m

r2
f(z) :z2Y./2(T_-_

(35)

We can describe exponential growth or damping in time of

disturbances from the current-free background by assigning a

negative value to K (i.e. imaginary omega), and we obtain the

modified Bessel equation [14]. In this case the solutions show a

monotonic behavior and no change of sign.

The solution for the null line case is very different and can

be expressed as

[ *i (K-m2) I/2
f(r)- (36)

r 2

The behavior depends critically on the parameter (K-m2), but the

same formal expression can be always be used. If this quantity is

larger than zero the solution f(r) oscillates around zero with

decreasing amplitude as r increases. This case can also be

expressed using trigonometric functions. But, if the parameter (K-

m z) is negative, i.e. m2>K, the solution is monotonically increasing

or decreasing and does not change sign. The case of exponential

grow or decrease in time, viz. K<0, is just another case where the
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parameter (K-m2) <0.

An analysis of the null line problem, although in a very

different context, was made by Craig and McClymont [I°] . They have not

used an equation for the electric current but rather for the

velocity and they arrive at solutions which are a subset of those

we show, i.e. they correspond to m=0 and K>0. But they address

their study to magnetic reconnection which we neglect here because

in the conditions we consider it is of little importance (see

below). The significance of the reconnection region can be assessed

by considering the resistive terms associated to Joule dissipation.

Considering the complete equation (18) for the current evolution we

compare the dissipation term

-Dm_j (37)
at

with the propagation term

2 b2r 2=
V_J=--J (38)

4"gPo

This comparison permits the definition of a radius R d at which the

Joule dissipation term has the same magnitude as the Lorentz force

term

R_"= ( 4"_yP° ) D=_
b2 (--'_--_s2) (39)
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Using typical values for the high-conductivity solar atmosphere,

T=I06 K and p=l dyne cm'Z), and for values of the field gradient and

rate of variations from the observed fine-scale photospheric

features which drive the field evolution, b=0.1 G km "I and

_=10-3s -z we obtain

Rd=0.27 cm

For values of r much larger than Rd, i.e. for all practical values

of r, the Joule dissipation is negligible compared with the Lorentz

force term and the plasma behavior can be considered as ideal.

Analogously, in the arcade case, there is a radius at which the

current dissipation becomes as important as the Lorentz force term.

The magnitude of this radius can be estimated using equation (44).

Note that the RHS of equation (43) contains two factors, the

first corresponds to the radius, Rp, at which the Alfven velocity

reaches the same value as the sound speed (viz the plasma-beta

becomes of the order of unity). The second is a dimensionless

factor, which is independent of the field gradient and much smaller

than unity (about 2x10 "14 in our case). We estimate that the gas

pressure effects are significant over the region with r<Rp for the

null line case, with Rp=6.8 106Rx (and for r>Rp for the arcade case,

with Rp=l.5 10"SRd ).

In summary, for cases in the high-conductivity solar plasma

and with the kind of magnetic fields and motions commonly observed
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in the Sun (except perhaps for the most violent events) we expect

that the low-beta approach used here will break down long before

any non-ideal effects become important. Therefore, the boundary

conditions for the low-beta regions are imposed by matching with

the surrounding high-beta regions. Current dissipation, and

magnetic reconnection, may only take place in a very small core

buried inside the high-beta region. In the arcade case the current

dissipation will only dominate far outside the arcade, in the high-

beta region. In both cases, the dynamics should be obtained

independently of the field and then the dissipation effects can be

evaluated.

In the case when r<Rp for the null line or r>Rp for the arcade,

i.e.

b212a

 vqPo (40)

the solutions we have shown are no longer valid and one finds the

usual propagation of acoustic perturbations. We estimate that the

solutions we show here are valid in the region where VA>Vs, i.e. for

r>Rp for the null line case (with the values given above it is Rp=46

km). Therefore, any equations which neglect the gas pressure

effects are inappropriate in the limit of very small r, and the

outer solutions for the low-beta region have to match those for the

high-beta region (instead of those for the central, minute,
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reconnection region).

For the typical null line case shown here the inner high-beta

region is rather small (although far larger than the resistive

region) and the sound transit time through this region is much

smaller than the characteristic times of the evolution we consider

R__ =0.3s(_ -I (41)

Vs

Therefore, this central region can be studied using a quasi-steady

approach. This approach will be studied in the next section.

Also, using the typical parameters given above we obtain a

typical value of K of about 9x10 "8, which results a very small

number and is almost negligible except for the mode m=0.

Our solutions for the two cases give general analytical

solutions for the electric currents which would result in a simple

arcade and in a null line case in the corresponding low-beta

regions. The solutions shown must be combined with the appropriate

coefficients, defined by the boundary and initial conditions, in

order to solve particular problems. In most cases these boundary

conditions are given by the non-negligible plasma-beta neighboring

regions.

As a simple example of how to use the boundary conditions in

the simple cases we showed, let us assume that the velocity is well

known at the z=O plane (e.g. from observations). The z>0 region

satisfies V_s<V A and we want to find the electric currents and the
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distortion of the field in this region. For the arcade case, at

some large value of r, _, the previous condition does not apply,

and also there must be a lower limit for r, R_, because otherwise

the background potential field would become arbitrarily large. This

defines a semi-cylinder, shown in Figure 3, which contains the

region where our previous solutions are valid. Let us now assume

that the velocity variations are purely horizontal (vz=0),

specified, and continuous at the plane z=0. Let us assume, for

simplicity, that the semi-cylindrical boundaries effects on the

solution can be ignored. For the case of the null line, one obtains

a similar semi-cylindrical domain, except that the roles of Rp and

R_ are interchanged (i.e. Rp becomes the lower limit and R_ the

upper limit for r).

In these conditions we can obtain the amplitude coefficients

from the matching of the specified velocity with our solutions

resulting from equation (39)

v_ (z=0,y=+r) - +ibr" ira-"

v_(z=O,y=-r)--ibr'_ am e fm(r )
(opc ,.-._m

(42)

These equation completely define the coefficients a m and therefore

give the full solution for the spatial dependence of all quantities

at any given frequency of the driving boundary (z=0).

This calculation becomes simpler due to the smallness of K,

which permits expansions of the functions fm in terms of this
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parameter. These expansions result in polynomials whose

coefficients can be easily determined from the boundary conditions

shown.

However, in the previous equation (22) we have neglected the

gas pressure and the component of the velocity parallel to the

background field remains undefined. But, equation (23) completely

defines the current J and we can compute the term Qj of equation

(19), and using this equation (and the energy equation) we can find

the density and pressure variations. These variations define the

velocity along the field and require additional initial and

boundary conditions. Using the previous results we find

ab fJ(r)ei(_t._) (43)
Q -pc r

for the simple arcade, and

Qj= a__bb[rfJ(r) cos (2_) -imf(r) sin (2_) ] e i(_t÷_)
pc

(44)

for the null line case. The solution of the equations in general is

very complicated, but we are only interested in the small r and

slow variations. In the next section we show how one can fully

solve the null line case in the regions close to the high-beta

core.
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B. Practically incompressible regions

Let us now consider the case in which the velocity variations

are very slow and, as before, the magnetic field is almost

potential (i.e. the background electric current is zero). We assume

here that gravity is negligible and that the time derivative terms

in equations (19) and (20) are negligible. The resulting system of

equations is

V. [V(6p) - Jx___BB]=0
c

Vx{Vx{Bx [V (6p) - JxB ] }}=0
c

(45)

These equations show that the value between brackets can be solved

as a vector function, F. Replacing this into the equations (45) we

find that the divergence of the function F is zero, and there is an

equation for the part of F perpendicular to B. Any such function

defines a solution of the set of equations (45), therefore we can

first solve the equations

V. F=0
(46)

Vx [Vx (BxF) ] =0

for the function F, and then find the pressure and electric current

using the definition of F.
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Using the result for F, the pressure gradient results

S. V(_p) :F. B (47)

and the electric current is given by

j :__c_c[Bx (V6p-F) ]
t B2

(48)

where no constraints are posed on the component of J parallel to

the magnetic field.

These relations can define the electric current variations

across the domain after the pressure variations are solved by using

the solutions for the function F and the boundary conditions.

Let us study the central region of the Figure 3, in the case

of the null-line shown in the previous section. For this central

region we consider two boundaries, a) the z=0 plane, and b) the

semi-cylinder of radius Rp. Because we consider homogeneous

background density and pressure in the example, the adiabatic

energy equation (21) gives simply

6p=V_p (49)

where V s is the adiabatic sound speed. Using the previously shown

estimates for the physical parameters, we find that the domain we

consider satisfies the basic conditions for our equations (45). The
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value of K measures the importance of the time-derivative term in

equation (20), and it was shown to be very small. On the other

hand, the importance of the time-derivative term in equation (19)

can be evaluated from

(50)

(This number is identical to K because of the definition of _).

Using the second of equations (46) we find that

BxF:_ x [CIln (r) +_m Cm/mei_] (51)

This equation defines completely the component of F perpendicular

to B, in terms of the coefficients C m given by the boundary

conditions at the z=0 plane and (see above), and some properties of

the asymptotic physical behavior for either small or large r. In

the case we study many solutions (those with m<l, and the

logarithmic solution) are non-physical because the force, F, would

display singularities at r=0 which are not expected for the problem

we are treating.

In order to find the remaining component of the force, the

first of equations (46) and a boundary condition must be used. The

analysis can be carried with the help of the magnetic field

potential and another potential defined in such way that its

gradient is perpendicular to the magnetic field, i.e., let
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_=byz=bz2Sin(2_ )
2

T=b (z2_y2) =br2 cos (2_)
2 2

(52)

This set of functions satisfy the conditions

B2=IV# 12=IVTl2=b2r 2

V#. VT =_# =_T =0

V#xVT=@x (b2r 2)

(53)

(The functions introduced can be interpreted as a curvilinear set

of coordinates to replace the cartesian ones.)

The force at any location (except at the central point r=0)

can be expressed in terms of the field-aligned and transverse (but

in the plane [y,z]) components. Using the functions previously

introduced it is

F=_V_+_IT_ (54)

The transverse component was previously determined, and for a given

m (omitting the logarithmic solution) we find

_ =CmIm-2 e i(_t*"_) (55)

Therefore the only remaining problem is to find _ by solving the

equation

35



V. F=V_. V_ ÷V_. VW =0 (56)

Using the previous definitions we find the formal solution

,=-[_d.÷h(,) (57)

which contains the boundary condition in the integration constant

h(_) . (It can also be easily demonstrated that this integration

constant also defines the curl of the force.) The solutions in our

case have a slightly complicated expression due to the

trigonometric expressions involved, we obtain

_=_/rm-6 (_-im_ ) d_+h (_) (58)

with

_=2arctg(-_ )

(59)

In general the boundary condition can be set by first finding

the variation of the magnetic potential along the boundary

_bond(_) , and second using
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(60)

In our example, if we assume that the field-aligned component

of the force is zero at the plane z=0, we find

bond = 0

(61)

In order to show the details of the application of boundary

conditions, let us consider the m=2 mode. Therefore, suppose that

from the velocities one has found that the total force at the

boundary, plane z=0, one has found that only this mode is present.

From equation (55) we obtain

_2=qei_C T+i_
(62)

Using equation (57) and the boundary condition (zero vertical force

at z=0) we find

a2=C2eiWC[in( __T_ +_ ) - _ +i T -isign(T) ]
(63)

These quantities completely determine the force, but in order to

find the specific behavior of the gas pressure and the electric

current

consider

one more boundary condition has to be applied. Let us

two extreme cases. In the first we assume that the
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pressure at the boundary is constant (i.e., not only the vertical

but also the horizontal pressure variation is zero. In this case,

the pressure anywhere in the domain can be expressed as

p=c2e   [ in( )

+i_sign (T) -iTln ( _+_ ) ]

(64)

and the electric current is

J:@xC2eiwt[ _ 2sign(T)-iln( _+_
c •

)] (65)

Note that this solution contains very large currents close to the

separatrix surfaces, at z2=y 2. The direction of the current is

opposed on both sides of the separatrix. Also, currents flow at the

boundary, and below (z<0) and these are the responsible for the

plasma dynamics. In the other extreme, we may consider the case

when the pressure varies over the boundary and some terms of

equation (64) are omitted or changed. In this case terms can be

added to the pressure which depend only on T and the electric

current changes (to maintain the condition set on the force F).

This shows that in this case the dynamics is given by both gas

pressure and electric current. Dynamics given purely by gas

pressure (with zero electric current) is only possible for vertical

pressure gradient imposed at the boundary.
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The example studied here in some detail is just intended to

illustrate the application of our method to relatively simple two-

dimensional cases. However, the more complicated three-dimensional

cases can be treated in an analogous way, although the equations

become more complicated and difficult to solve.
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VI. Conclusions

We have shown a formulation for solving MHD problems which

develops equations for the plasma density and electric current.

This formulation differs from the customary method of solving the

equations for the velocity and the magnetic field. Our proposed

method displays vector properties which make it easier to find

solutions in geometrically complicated problems. Our method is

specially well suited for studying the interaction between low- and

high-beta regions which are common in plasmas and lead to very

interesting observed phenomena. Our approach permits to compute

,_irectly the electric currents from physical considerations, and

differs from the usual in which the magnetic field is derived and

then the currents may be computed by differentiating the field. The

direct study of the electric currents gives insight into the way

they are generated and evolve in space and time in typical

astrophysical situations.

Our formulation is applied to some typical cases found in

astrophysics, and we show the explicit analytic solutions. We have

considered two cases in which the velocities and electric currents

are small, and the Alfven velocity given by the background

potential field is much larger than the sound speed. The two cases

studied in detail correspond to the inner region of a simple

magnetic arcade, and the outer region around a null line. These two

situations have been studied before 5,1°,11 in a different context.

Here we show a general formulation to the solution of the problem

4O
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of the dynamics of the plasma and magnetic energy in stellar

atmospheres resulting from driving motions of the inner regions

plasma. This method is based on the fact that usually some

quantities such as plasma velocity and pressure can be estimated

over a given boundary from observations. We show two detailed

solutions for one normal mode in the null line case. This example

shows in full detail how to apply our formalism and the proper

boundary conditions for fully solving all variables. The general

solutions shown for the arcade and the null line cases are

expressed in terms of modes which are neither pure Alfven nor

magneto-acoustic modes. We show that in the limit of low plasma

beta (V A >> Vs) the distinction between these modes is irrelevant,

and much more practical solutions can be found using our

formulation.

The applications we have developed here in detail are

basically two-dimensional. In this case we find relatively simple

analytical expressions for describing all quantities. However, our

formulation is particularly interesting for more complicated full

three-dimensional problems, in which our approach of dealing with

the density and electric current (and pressure) has significant

advantage over the previous approaches. This is because we solve

the electromagnetic directly for the electric current and gas

pressure, which are local plasma related quantities, and we rely on

observable boundary conditions, e.g., the velocity and pressure at

the boundary. This basic problem is very important in astrophysics

because the magnetic energy supply to the outer layers (dependent
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on the electric currents development in these layers) of solar-type

stars is supposed to be the main heating mechanism. Also this

energy is supposed to accumulate in the corona, under certain

conditions, and release explosively in solar and stellar flares and

mass ejections.
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FIGURE CAPTIONS

Fig. i- The potential magnetic field for a simple arcade is the

upper half of the circular lines. This field would result from an

infinitely long line current, located along the x axis

(perpendicular to the plane of the figure).

Fig. 2- The potential field for an infinitely long null line. This

field configuration can be used for approximating the field in the

region which surrounds the zero field line. Such field

configuration may result from two line currents at a large distance

form the region of interest. The configuration is not appropriate

at large distances from the line because the magnetic field

increases linearly with this distance and this would lead to non-

reasonable field values.

Fig. 3- The region in which the solutions obtained here are valid.

For the simple arcade the small radius is _, and the large radius

is Rp. For the null line case the small radius is Rp, and the large

radius is _. Typical values are, for the small radius 102 km, and

for the large radius 104 km.

44



1.Z

Z

8
-1 y 1

Figure I

45



1.Z

Q
I'I

-1 Y

Figure 2

46



Y

Figure 3.

47


